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Abstract

This paper proposes an accurate row-action type
iterative method which is appropriate to reconstruct
sparse objects from a limited number of projections. The
main idea is to use the Lp norm with p ≈ 1.1 to pick up
a sparse solution from a set of feasible solutions to the
measurement equation. We also show that this method
works well in the 3-D blood-vessel reconstruction.

I. Introduction

Image reconstruction from a limited number of
projections is a well-investigated subject in tomographic
reconstruction fields. For example, this problem possesses
applications in visualization of 3-D blood-vessel structure
from angiographic projections and cardiac imaging with
various modalities [1]. In spite of a lot of works, however,
it is fair say that successful reconstruction algorithms
which can be used in clinical routine do not exist. This
paper proposes an iterative reconstruction algorithm
which is very powerful for sparse objects. Here, the
sparse objects refer to objects which have non-zero pixel
values only on a relatively small number of pixels. Such
objects appear in many instances of tomographic imaging.
In particular, we have the following three applications
in mind. The first application is the reconstruction
of cerebral or cardiac blood-vessel structure from a
limited number of angiographic projections measured
with a C-Arm or rotational-angiographic devices (digital
subtraction technique is normally used to eliminate
unnecessary background objects). The second application
is the cardiac SPECT or PET imaging where the cross
section can be approximately regarded as a sparse
object because the isotope normally concentrates only
on the heart. The last interesting application is the
reconstruction of tomographic dynamic sequences. This
problem can be also formulated as the reconstruction of a
sparse object in the following way. Let t denote time and
assume that we have a good reconstruction ft at time t.
Then, ft+1 − ft becomes a sparse object if the motion
in the cross section is not so large. Therefore, we can
reconstruct ft+1− ft from a limited number of projections
gt+1 at time t+ 1 if an accurate reconstruction algorithm
for sparse objects exists, which leads to an accurate
reconstruction of ft+1.

The proposed algorithm is outlined as follows. The
tomographic reconstruction problem can be formulated as
solving a linear equation A�x = �b where �x is an image
vector, �b is a set of measured line integrals, and A is

an m × n matrix relating �x to �b. When the number of
projections is small, many feasible solutions to A�x = �b
exist because m < n. To pick up a good solution having
sparsity from a set of feasible solutions, we formulate the
problem as a bound-constrained minimum norm problem
(PPB):

minimize ‖ �x ‖p
p /p subject to A�x = �b and 0 ≤ �x ≤ 1

where ‖ �x ‖p denotes the Lp norm of �x and the inequality
0 ≤ �x ≤ 1 can be understood componentwise. The value
of norm parameter p has a large effect on the solution.
The best value of p for sparse objects is p = 0 because
limp→0 ‖ �x ‖p

p is equivalent to the number of non-zero
pixels. This choice allows to pick up an object which
has minimum number of non-zero pixels. However,
‖ �x ‖p

p /p is non-convex and is non-differentiable when
0 < p < 1 which makes it impossible to use well-known
convex optimization techniques to construct an iterative
algorithm. To overcome this drawback, we use p ≈ 1.1 (a
slightly larger value than 1). For this choice, ‖ �x ‖p

p /p
is both convex and differentiable so that we can use
standard convex optimization techniques. Furthermore,
p ≈ 1.1 still allows to pick up a sparse solution to
A�x = �b compared to the use of ordinary Euclidean norm
p = 2. We construct an iterative method for the above
constrained minimization problem by using the dual
coordinate ascent method [2]. This method converts the
original problem (PPB) into a dual problem by using
the so-called Lagrangian duality. Since the dual problem
corresponding to (PPB) becomes a simple unconstrained
maximization problem, we solve it by using the coordinate
ascent method. In the primal space, this method can be
considered as a variant of Bregman’s method for convex
programming excepting the bound constraint 0 ≤ �x ≤ 1
[3]. The resulting algorithm is of row-action type similarly
to the Algebraic Reconstruction Technique (ART). The
iteration converges fast by using a projection access order
proposed in the literature [4].

We believe that this method possesses some important
applications in tomography. As a first step, we have
applied this method to the reconstruction of 3-D blood-
vessel structure from a limited number of cone-beam
projections. The simulation results demonstrate that an
accurate reconstruction is possible from only 8 projections
for which the Feldkamp method and the ART method are
not valid anymore. Furthermore, we apply the method
to real-data measured with the cone-beam tomographic
imaging system using a synchrotron radiation x-ray
source [5].



II. Proposed Method

A. Problem Formulation

In tomography, the goal is to reconstruct an object
from line-integral projection data. A discrete version of
the projection process can be represented as

A�x = �b
where A = (aij) is a real m × n matrix representing the
projection operator, �x = (x1, · · · , xn)� is a real vector
representing the object, and �b = (b1, · · · , bm)� is the
corresponding projection data. Let �cj denote the j-th
column of matrix A.

For convenience to explain the method, we first consider
the following minimum norm problem (PP):

minimize ‖ �x ‖p
p /p subject to A�x = �b (1)

where 1 < p < 2. We use p ≈ 1.1 for sparse objects
as mentioned in Section I. Though the problem (PP) is
simpler than the problem (PPB), it is still a nonlinear
constrained optimization, and is difficult to solve directly.
However, its dual will be an unconstrained optimization.

B. Lagrangian Duality

From the reference [6], the Lagrangian dual of the
problem (PP) is the following maximization problem
(DP):

maximize D(�y) = �b��y− ‖ A��y ‖q
q /q (2)

where �y = (y1, · · · , ym)� is a real vector, and q = p/(p−1).
Let �z(�y) = (z1(�y), · · · , zn(�y))� be a vector function whose
j-th component is zj(�y) = |�c�j �y|q−1sign(�c�j �y). If �x

∗ solves
the problem (PP), then there exists �y∗ such that �x∗ =
�z(�y∗) and �y∗ solves the problem (DP). Conversely, let �y∗

solve the problem (DP), then the vector �x∗ = �z(�y∗) solves
the problem (PP).

C. Solving Maximization Problem (DP)

Obviously, the number of the unknowns in the problem
(DP) is less than that in the problem (PP). Furthermore,
the problem (DP) is an unconstrained maximization which
is easier to solve than the problem (PP).

Differentiating (2), we get the following equations:

D′
yi
(�y) = 0, i = 1, · · · ,m. (3)

Equation (3) is a system of nonlinear equations which
yields a solution of (2). Using the newton-like iteration
to each equation in parallel, we get

y
(k+1)
i = y(k)

i − β D
′
yi
(�y(k))

D′′
yiyi

(�y(k))
, i = 1, · · · ,m. (4)

where β is the relaxation parameter. We define

∆i(ω1, · · · , ωn) =

bi −
n∑

j=1

aij |ωj|q−1sign(ωj)

(q − 1)
n∑

j=1

(aij)2|ωj |q−2

,

then for i = 1, · · · ,m, (4) can be written as

y
(k+1)
i = y(k)

i + β∆i(�c�1 �y
(k), · · · ,�c�n �y(k)), (4′)

In fact, for convenience to implement, we use the
sequential Gauss-Seidel type iteration scheme (5) in our
program:

y
(k+1)
i = y(k)

i +β∆i(ω
(k,i)
1 , · · · , ω(k,i)

n ), i = 1, · · · ,m, (5)
where ω(k,i)

j =
∑i−1

l=1 aljy
(k+1)
l +

∑m
l=i aljy

(k)
l is another

expression of �c�j �y in the iteration. Equation (5) can be
regarded as the coordinate ascent method applied to
maximize D(�y).

D. Algorithm

According to the duality, if �x∗ and �y∗ are solutions
of the problems (PP) and (DP) respectively, then
x∗j = |�c�j �y∗|q−1sign(�c�j �y

∗), j = 1, · · · , n. Though
it is difficult to get an explicit iteration scheme for
�x, we can get one for ω(k,i)

j . We define �µ(k,i) =

(y(k+1)
1 , · · · , y(k+1)

i−1 , y
(k)
i , y

(k)
i+1, · · · , y(k)

m )�, �µ(k,i+1) =
(y(k+1)

1 , · · · , y(k+1)
i−1 , y

(k+1)
i , y

(k)
i+1, · · · , y(k)

m )�, �µ(k,m+1) =
�µ(k+1,1), ω(k,i)

j = �c�j �µ
(k,i), and ω(k,m+1)

j = ω
(k+1,1)
j . Let

�Ω(k,i) = (

i−1︷ ︸︸ ︷
0, · · · , 0,∆i(ω

(k,i)
1 , · · · , ω(k,i)

n ),

m−i︷ ︸︸ ︷
0, · · · , 0)�. Then

from (5), we obtain

�µ(k,i+1) = �µ(k,i) + β�Ω(k,i). (5′)

Taking an inner product with �cj , we finally get

ω
(k,i+1)
j = ω(k,i)

j + βaij∆i(ω
(k,i)
1 , · · · , ω(k,i)

n ), (6)

j = 1, · · · , n.
Note that (6) is a row-action type iteration. Note also that
(6) is exactly the ART method when p = 2. Unfortunately,
the iteration is instable when the denominator of ∆i in (6)
is near 0. In our program, we set the denominator to a real
constant MIN if its value is less than the constant MIN .

The algorithm is summarized as follows.

[STEP 1] Give an initial vector �ω(0) = (ω(0)
1 , · · · , ω(0)

n )�

such that �ω(0) = A��y(0) for some �y(0).

[STEP 2] For k = 0, 1, · · ·, do the following iteration until
k is large enough or ‖ �ω(k) − �ω(k+1) ‖ is small enough.

[STEP 2.1] Let �ω(k,1) = �ω(k).

[STEP 2.2] For i = 1, · · · ,m, do the iteration (6).

[STEP 2.3] Let �ω(k+1) = �ω(k,m+1).

[STEP 3] Suppose �ω∗ is the final result of [STEP 2], then
�x∗, whose j-th component is x∗j = |ω∗

j |q−1sign(ω∗
j ), is the

required result.

E. Dealing with Bound Constraint

In this subsection, we consider the bound-constrained
minimum norm problem (PPB). This problem is equivalent
to the following problem:



minimize F (�x) =
n∑

j=1

f(xj) subject to A�x = �b

where f(t) =
{
tp/p 0 ≤ t ≤ 1
∞ otherwise . The Lagrangian dual

of the above problem is

maximize �b��y −G(A��y)

where G(�x) =
n∑

j=1

g(xj), g(t) =




0 t < 0
tq/q 0 ≤ t ≤ 1
t− 1/p t > 1

.

Similarly to the previous (PP) case, we can get the
following iteration scheme which is like the iteration (6).

ω
(k,i+1)
j = ω(k,i)

j + βaij

bi −
n∑

l=1

ailg
′(ω(k,i)

l )

n∑
l=1

a2ilg
′′(ω(k,i)

l )

.

Unfortunately, g(t) does not have the second derivative
at t = 1. Therefore, we define g′′(1) = q − 1 for
implementation. And we set the denominator of the
fraction in the above iteration scheme to a real constant
MIN if its value is less than MIN . Suppose �ω∗ is the
final result of the above iteration, then �x∗, whose j-th
component is x∗j = g′(ω∗

j ), is the solution of the problem
(PPB).

III. Experimental Results

A. Simulation Studies

We have applied the proposed method to
reconstruct 3-D blood-vessel structure from a limited
number of cone-beam projections. We have used
the 3-D blood-vessel phantom developed by the
phantom group of Siemens (http://www.imp.uni-
erlangen.de/forbild/english/results/index.htm). The
x-ray source positions are located on the circle with
uniform angular interval over 180◦. The number of
source positions is 8 or 4 and each projection consists
of 256 × 256 pixels. The reconstructed image has
256 × 256 × 256 pixels. We have compared the proposed
method with the conventional ART method which has
been often used to this kind of limited-data problem in
the literature. We used a projection data access order
proposed in [4] which allows a fast convergence. By
using this data access order, ten iterations were enough
to obtain satisfactory images. The computations were
performed with a PC with a Pentium III 700 MHz
processer and the required computational time for ten
iterations was about 30 minutes which is reasonable in
practice. Five transaxial slices of reconstructed images
after ten iterations are shown in Fig. 1 and Fig. 2
together with the corresponding slices of the phantom. In
Fig. 3, we also show 3-D graphic display corresponding
to the reconstructed images which is generated by using
the volume rendering software. The threshold value to

pick up the blood vessels from the reconstructed images
is manually optimized dependent on each method. The
proposed method succeeds in accurately reconstructing
the fine blood-vessel structure whereas the ART method
produces severe artifacts which make it impossible to
recognize thin blood vessels. These results strongly
demonstrate that the use of Lp norm with p ≈ 1.1 is
very powerful for sparse objects compared to p = 2
corrsponding to the ART method. Furthermore, the
use of bound constraint 0 ≤ �x ≤ 1 could improve the
reconstructed images.

B. Real Data

We have also applied the proposed method to real
data measured with our cone-beam tomographic imaging
system using a synchrotron radiation x-ray source [5].
The cardiac blood-vessel phantom is used as a test object.
The result will be presented at the conference. We are
also applying the proposed method to cardiac SPECT
data. The current result shows that the proposed method
more accurately recovers the sharp boundary of blood
pool compared with the ART method.

IV. Conclusions

We have proposed an accurate iterative method which
is appropriate to reconstruct sparse objects from a limited
number of projections. The main idea of the proposed
method is to use the Lp norm with p ≈ 1.1 to pick up
a sparse solution from a set of feasible solutions. The
algorithm is of row-action type and can be efficiently
implemented similarly to the ART method. We have also
shown that this method works well in the 3-D blood-vessel
reconstruction from a limited number of cone-beam
projections.
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Fig. 1: Reconstructed transaxial slices from 8 projections.
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Fig. 2: Reconstructed transaxial slices from 4 projections.
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Fig. 3: 3-D graphic display of reconstructed images.


